Abstract
Acute anterior uveitis (AAU) and the spondyloarthritis (SpA) subtypes ankylosing spondylitis, reactive arthritis and psoriatic arthritis are among the inflammatory diseases affected by the biology of the intestinal microbiome. In this Review, the relationship between AAU, SpA and the microbiome is discussed, with a focus on the major SpA risk gene HLA-B*27 and how it is associated with both intestinal tolerance and the loss of ocular immune privilege that can accompany AAU. We provide four potential mechanisms to account for how dysbiosis, barrier function and immune response contribute to the development of ocular inflammation and the pathogenesis of AAU. Finally, potential therapeutic avenues to target the microbiota for the clinical management of AAU and SpA are outlined.
Key points
-
Acute anterior uveitis (AAU) is the most common, clinically apparent, extra-articular manifestation of ankylosing spondylitis.
-
Both AAU and ankylosing spondylitis are strongly associated with HLA-B27.
-
HLA-B27 affects the composition of the gut microbiome, which in turn can modify the immune system and thereby affect health and disease.
-
The intestinal microbiome is strongly implicated in the pathogenesis of AAU and ankylosing spondylitis.
-
Although the mechanisms by which the intestinal microbiome cause AAU and ankylosing spondylitis are incompletely understood, a great potential exists to treat or prevent ankylosing spondylitis and AAU by altering the microbiome.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Lederberg, J. ‘Ome Sweet’ Omics: a geneological treasury of words. Scientist 15, 8 (2001).
Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).
Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).
Yang, X., Xie, L., Li, Y. & Wei, C. More than 9,000,000 unique genes in human gut bacterial community: estimating gene numbers inside a human body. PLOS One 4, e6074 (2009).
Shreiner, A. B., Kao, J. Y. & Young, V. B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 31, 69–75 (2015).
Osokine, I. & Erlebacher, A. Inflammation and autism: from maternal gut to fetal brain. Trends Mol. Med. 23, 1070–1071 (2017).
Stevens, B. R. et al. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut 67, 1555–1557 (2017).
Nussenblatt, R. B. The natural history of uveitis. Int. Ophthalmol. 14, 303–308 (1990).
Rothova, A., Suttorp-van Schulten, M. S., Frits Treffers, W. & Kijlstra, A. Causes and frequency of blindness in patients with intraocular inflammatory disease. Br. J. Ophthalmol. 80, 332–336 (1996).
Suttorp-Schulten, M. S. & Rothova, A. The possible impact of uveitis in blindness: a literature survey. Br. J. Ophthalmol. 80, 844–848 (1996).
Gritz, D. C. & Wong, I. G. Incidence and prevalence of uveitis in Northern California; the Northern California Epidemiology of Uveitis study. Ophthalmology 111, 491–500; discussion 500 (2004).
D’Alessandro, L. P., Forster, D. J. & Rao, N. A. Anterior uveitis and hypopyon. Am. J. Ophthalmol. 112, 317–321 (1991).
Rosenbaum, J. T. Characterization of uveitis associated with spondyloarthritis. J. Rheumatol 16, 792–796 (1989).
Brewerton, D. A., Caffrey, M., Nicholls, A., Walters, D. & James, D. C. Acute anterior uveitis and HL-A 27. Lancet 302, 994–996 (1973). This seminal paper demonstrates an association between HLA-B*27 and susceptibility to AAU.
Lyons, J. L. & Rosenbaum, J. T. Uveitis associated with inflammatory bowel disease compared with uveitis associated with spondyloarthropathy. Arch. Ophthalmol. 115, 61–64 (1997).
Rosenbaum, J. T. Uveitis. An internist’s view. Arch. Intern. Med. 149, 1173–1176 (1989).
Fanlo, P. et al. Profile of patients with uveitis referred to a multidisciplinary unit in northern Spain. Arch. Soc. Esp. Oftalmol 92, 202–209 (2017).
Zagora, S. L. et al. Etiology and clinical features of ocular inflammatory diseases in a tertiary referral centre in Sydney, Australia. Ocul. Immunol. Inflamm. 25, S107–S114 (2017).
Chung, Y. M., Yeh, T. S. & Liu, J. H. Endogenous uveitis in Chinese—an analysis of 240 cases in a uveitis clinic. Jpn J. Ophthalmol. 32, 64–69 (1988).
Yang, P. et al. Clinical features of HLA-B27-positive acute anterior uveitis with or without ankylosing spondylitis in a Chinese cohort. Br. J. Ophthalmol. 102, 215–219 (2018).
Juanola, X., Loza Santamaria, E., Cordero-Coma, M. & Group, S. W. Description and prevalence of spondyloarthritis in patients with anterior uveitis: the SENTINEL interdisciplinary collaborative project. Ophthalmology 123, 1632–1636 (2016).
Haroon, M., O’Rourke, M., Ramasamy, P., Murphy, C. C. & FitzGerald, O. A novel evidence-based detection of undiagnosed spondyloarthritis in patients presenting with acute anterior uveitis: the DUET (Dublin Uveitis Evaluation Tool). Ann. Rheum. Dis. 74, 1990–1995 (2015).
Paiva, E. S., Macaluso, D. C., Edwards, A. & Rosenbaum, J. T. Characterisation of uveitis in patients with psoriatic arthritis. Ann. Rheum. Dis. 59, 67–70 (2000).
Rosenbaum, J. T. Uveitis: etiology, clinical manifestations, and diagnosis. UpToDate https://www.uptodate.com/contents/uveitis-etiology-clinical-manifestations-and-diagnosis (updated 21 Aug 2018).
Robinson, P. C. et al. Genetic dissection of acute anterior uveitis reveals similarities and differences in associations observed with ankylosing spondylitis. Arthritis Rheumatol 67, 140–151 (2015).
Rosenbaum, J. & Chandran, V. Management of comorbidities in ankylosing spondylitis. Am. J. Med. Sci. 343, 364–366 (2012).
Murray, P. I. & Rauz, S. The eye and inflammatory rheumatic diseases: the eye and rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis. Best Pract. Res. Clin. Rheumatol. 30, 802–825 (2016).
Billson, F. A., Dombal, F. T. D., Watkinson, G. & Goligher, J. C. Ocular complications of ulcerative colitis. Gut 8, 102–106 (1967).
Hopkins, D. J. et al. Ocular disorders in a series of 332 patients with Crohn’s disease. Br. J. Ophthalmol. 58, 732–737 (1974).
Petty, R. E. et al. Uveitis and arthritis induced by adjuvant: clinical, immunologic and histologic characteristics. J. Rheumatol. 16, 499–505 (1989).
Kezic, J. M., Davey, M. P., Glant, T. T., Rosenbaum, J. T. & Rosenzweig, H. L. Interferon-gamma regulates discordant mechanisms of uveitis versus joint and axial disease in a murine model resembling spondylarthritis. Arthritis Rheum. 64, 762–771 (2012).
Rehaume, L. M. et al. ZAP-70 genotype disrupts the relationship between microbiota and host, leading to spondyloarthritis and ileitis in SKG mice. Arthritis Rheumatol. 66, 2780–2792 (2014).
Baggia, S. et al. A novel model of bacterially-induced acute anterior uveitis in rats and the lack of effect from HLA B27 expression. J. Invest. Med. 45, 295–301 (1997).
De Vos, M., Mielants, H., Cuvelier, C., Elewaut, A. & Veys, E. Long-term evolution of gut inflammation in patients with spondyloarthropathy. Gastroenterology 110, 1696–1703 (1996). This paper demonstrates the association between SpA and subclinical inflammation of the intestine in >50% of patients with AS.
Mielants, H., Veys, E. M., Joos, R., Cuvelier, C. & De Vos, M. Repeat ileocolonoscopy in reactive arthritis. J. Rheumatol 14, 456–458 (1987).
Vaile, J. H., Meddings, J. B., Yacyshyn, B. R., Russell, A. S. & Maksymowych, W. P. Bowel permeability and CD45RO expression on circulating CD20+ B cells in patients with ankylosing spondylitis and their relatives. J. Rheumatol 26, 128–135 (1999).
Granfors, K. et al. Salmonella lipopolysaccharide in synovial cells from patients with reactive arthritis. Lancet 335, 685–688 (1990).
Granfors, K. et al. Yersinia antigens in synovial-fluid cells from patients with reactive arthritis. N. Engl. J. Med. 320, 216–221 (1989).
Wang, F. et al. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am. J. Pathol. 166, 409–419 (2005).
Box, S. A. & Pullar, T. Sulphasalazine in the treatment of rheumatoid arthritis. Br. J. Rheumatol 36, 382–386 (1997).
Halfvarson, J. et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).
Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489–1499 (2014).
Pascal, V. et al. A microbial signature for Crohn’s disease. Gut 66, 813–822 (2017).
Kubinak, J. L. et al. MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection. Nature Commun. 6, 8642 (2015).
Breban, M. et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann. Rheum. Dis. 76, 1614–1622 (2017).
Tito, R. Y. et al. Dialister as microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol 69, 114–121 (2016).
Costello, M. E. et al. Intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol. 67, 686–691 (2014). This paper demonstrates intestinal dysbiosis in patients with AS relative to healthy individuals.
Scher, J. U. et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol 67, 128–139 (2015).
Aggarwal, A., Sarangi, A. N., Gaur, P., Shukla, A. & Aggarwal, R. Gut microbiome in children with enthesitis-related arthritis in a developing country and the effect of probiotic administration. Clin. Exp. Immunol. 187, 480–489 (2017).
Di Paola, M. et al. Alteration of fecal microbiota profiles in juvenile idiopathic arthritis. Associations with HLA-B27 allele and disease status. Front. Microbiol. 7, 1703 (2016).
Stoll, M. L. et al. Fecal metabolomics in pediatric spondyloarthritis implicate decreased metabolic diversity and altered tryptophan metabolism as pathogenic factors. Genes Immun. 17, 400–405 (2016).
Shiina, T., Inoko, H. & Kulski, J. K. An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens 64, 631–649 (2004).
Jin, P. & Wang, E. Polymorphism in clinical immunology - from HLA typing to immunogenetic profiling. J. Transl Med. 1, 8 (2003).
Lin, P. et al. HLA-B27 and human beta2-microglobulin affect the gut microbiota of transgenic rats. PLOS One 9, e105684 (2014). This paper shows that a specific HLA allele, HLA-B*27, can shape the intestinal microbiota in rats.
Gill, T., Asquith, M., Brooks, S. R., Rosenbaum, J. T. & Colbert, R. A. Effects of HLA-B27 on gut microbiota in experimental spondyloarthritis implicate an ecological model of dysbiosis. Arthritis Rheumatol. 70, 555–565 (2017).
Hammer, R. E., Maika, S. D., Richardson, J. A., Tang, J. P. & Taurog, J. D. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell 63, 1099–1112 (1990).
Taurog, J. D. et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180, 2359–2364 (1994).
Dieleman, L. A. et al. Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment. Gut 52, 370–376 (2003).
Olivares, M. et al. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut 64, 406–417 (2015).
Gomez, A. et al. Loss of sex and age driven differences in the gut microbiome characterize arthritis-susceptible 0401 mice but not arthritis-resistant 0402 mice. PLOS One 7, e36095 (2012).
Silverman, M. et al. Protective major histocompatibility complex allele prevents type 1 diabetes by shaping the intestinal microbiota early in ontogeny. Proc. Natl Acad. Sci. USA 114, 9671–9676 (2017).
Asquith, M. J. et al. Perturbed mucosal immunity and dysbiosis accompany clinical disease in a rat model of spondyloarthritis. Arthritis Rheumatol. 68, 2151–2162 (2016).
Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 11, 76–83 (2010).
Olson, J. A. et al. Calprotectin is raised in endogenous posterior uveitis. Ocul Immunol. Inflamm 4, 91–98 (1996).
Walscheid, K. et al. Elevated S100A8/A9 and S100A12 serum levels reflect intraocular inflammation in juvenile idiopathic arthritis-associated uveitis: results from a pilot study. Invest. Ophthalmol. Vis. Sci. 56, 7653–7660 (2015).
Kim, D. H. et al. Fecal calprotectin as a non-invasive biomarker for intestinal involvement of Behcet’s disease. J. Gastroenterol. Hepatol. 32, 595–601 (2017).
Faure, M. et al. The chronic colitis developed by HLA-B27 transgenic rats is associated with altered in vivo mucin synthesis. Dig. Dis. Sci. 49, 339–346 (2004).
Stoll, M. L. et al. Akkermansia muciniphila is permissive to arthritis in the K/BxN mouse model of arthritis. Genes Immun. https://doi.org/10.1038/s41435-018-0024-1 (2018).
Stoll, M. L. et al. Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Res. Ther. 16, 486 (2014).
Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. ELife 2, e01202 (2013).
Macpherson, A. J., Yilmaz, B., Limenitakis, J. P. & Ganal-Vonarburg, S. C. IgA function in relation to the intestinal microbiota. Annu. Rev. Immunol. 36, 359–381 (2018).
Salas-Cuestas, F. et al. Higher levels of secretory IgA are associated with low disease activity index in patients with reactive arthritis and undifferentiated spondyloarthritis. Front. Immunol. 8, 476 (2017).
Belkaid, Y. & Harrison, O. J. Homeostatic immunity and the microbiota. Immunity 46, 562–576 (2017).
Park, K. et al. ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1P signaling complex. Proc. Natl Acad. Sci. USA 113, E1334–E1342 (2016).
Moreau, M. C., Ducluzeau, R., Guy-Grand, D. & Muller, M. C. Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infect. Immun. 21, 532–539 (1978).
Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).
Lindstedt, G., Lindstedt, S. & Gustafsson, B. E. Mucus in intestinal contents of germfree rats. J. Exp. Med. 121, 201–213 (1965).
Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).
Qiu, X., Zhang, M., Yang, X., Hong, N. & Yu, C. Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis. J. Crohn’ Colitis 7, e558–e568 (2013).
Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).
Atarashi, K. et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science 358, 359–365 (2017).
Nakamura, Y. K. et al. Gut microbial alterations associated with protection from autoimmune uveitis. Invest. Ophthalmol. Vis. Sci. 57, 3747–3758 (2016).
Cunningham, M. W. Streptococcus and rheumatic fever. Curr. Opin. Rheumatol 24, 408–416 (2012).
Shahrizaila, N. & Yuki, N. Guillain-barre syndrome animal model: the first proof of molecular mimicry in human autoimmune disorder. J. Biomed. Biotechnol. 2011, 829129 (2011).
Pianta, A. et al. Two rheumatoid arthritis-specific autoantigens correlate microbial immunity with autoimmune responses in joints. J. Clin. Invest. 127, 2946–2956 (2017). This paper identifies rheumatoid-arthritis-associated autoantigens with homology to commensal epitopes, consistent with mimicry as a potential disease mechanism that might be shared between rheumatoid arthritis and SpA-associated extraintestinal inflammation.
Yin, Y. & Mariuzza, R. A. The multiple mechanisms of T cell receptor cross-reactivity. Immunity 31, 849–851 (2009).
Horai, R. et al. Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity 43, 343–353 (2015). This study elegantly demonstrates that gut bacteria might prime T cells to drive ocular inflammation.
Schwimmbeck, P. L. & Oldstone, M. B. Molecular mimicry between human leukocyte antigen B27 and Klebsiella. Consequences for spondyloarthropathies. Am. J. Med. 85, 51–53 (1988).
van Bohemen, C. G., Grumet, F. C. & Zanen, H. C. Identification of HLA-B27M1 and -M2 cross-reactive antigens in Klebsiella, Shigella and Yersinia. Immunology 52, 607–610 (1984).
Mielants, H., Veys, E. M., De Vos, M. & Cuvelier, C. Increased intestinal permeability in ankylosing spondylitis. Gut 33, 1150 (1992).
Ciccia, F. et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann. Rheum. Dis. 76, 1123–1132 (2017).
Pacheco-Tena, C. et al. Bacterial DNA in synovial fluid cells of patients with juvenile onset spondyloarthropathies. Rheumatology (Oxford) 40, 920–927 (2001).
Nikkari, S. et al. Salmonella-triggered reactive arthritis: use of polymerase chain reaction, immunocytochemical staining, and gas chromatography-mass spectrometry in the detection of bacterial components from synovial fluid. Arthritis Rheum. 42, 84–89 (1999).
Siala, M. et al. Analysis of bacterial DNA in synovial tissue of Tunisian patients with reactive and undifferentiated arthritis by broad-range PCR, cloning and sequencing. Arthritis Res. Ther. 10, R40 (2008).
Gutierrez, A. et al. Gut Bacterial DNA translocation is an independent risk factor of flare at short term in patients with Crohn’s disease. Am. J. Gastroenterol. 111, 529–540 (2016).
Muralidhar, B., Rumore, P. M. & Steinman, C. R. Use of the polymerase chain reaction to study arthritis due to Neisseria gonorrhoeae. Arthritis Rheum. 37, 710–717 (1994).
Schrijver, I. A., Melief, M. J., Tak, P. P., Hazenberg, M. P. & Laman, J. D. Antigen-presenting cells containing bacterial peptidoglycan in synovial tissues of rheumatoid arthritis patients coexpress costimulatory molecules and cytokines. Arthritis Rheum. 43, 2160–2168 (2000).
Camus, G. et al. Mild endotoxaemia and the inflammatory response induced by a marathon race. Clin. Sci. (Lond.) 92, 415–422 (1997).
Bhanji, S., Williams, B., Sheller, B., Elwood, T. & Mancl, L. Transient bacteremia induced by toothbrushing a comparison of the Sonicare toothbrush with a conventional toothbrush. Pediatr. Dent. 24, 295–299 (2002).
Manfredo Vieira, S. et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359, 1156–1161 (2018). This paper demonstrates that translocation of gut commensal microorganisms to the liver might contribute to the pathogenesis of systemic lupus erythematosus and that targeted vaccination against the pathobiont E. gallinarum delays mortality in an animal model of the disease.
Spadoni, I. et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 350, 830–834 (2015).
Bouziat, R. et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 356, 44–50 (2017).
Rosenbaum, J. T., McDevitt, H. O., Guss, R. B. & Egbert, P. R. Endotoxin-induced uveitis in rats as a model for human disease. Nature 286, 611–613 (1980).
Allensworth, J. J., Planck, S. R., Rosenbaum, J. T. & Rosenzweig, H. L. Investigation of the differential potentials of TLR agonists to elicit uveitis in mice. J. Leukoc. Biol. 90, 1159–1166 (2011).
Chang, J. H. et al. Changes in Toll-like receptor (TLR)-2 and TLR4 expression and function but not polymorphisms are associated with acute anterior uveitis. Invest. Ophthalmol. Vis. Sci. 48, 1711–1717 (2007).
Morton, A. M. et al. Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. Proc. Natl Acad. Sci. USA 111, 6696–6701 (2014). This study uses a photoconvertible reporter mouse to provide evidence of migration of leukocytes from the intestine to the periphery.
Nakamura, Y. K. et al. Short chain fatty acids ameliorate immune-mediated uveitis partially by altering migration of lymphocytes from the intestine. Sci. Rep. 7, 11745 (2017).
Hegazy, A. N. et al. Circulating and tissue-resident CD4+ T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology 153, 1320–1337.e16 (2017).
Kugadas, A., Wright, Q., Geddes-McAlister, J. & Gadjeva, M. Role of microbiota in strengthening ocular mucosal barrier function through secretory IgA. Invest. Ophthalmol. Vis. Sci. 58, 4593–4600 (2017).
Ciccia, F. et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann. Rheum. Dis. 74, 1739–1747 (2015).
Gracey, E. et al. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann. Rheum. Dis. 75, 2124–2132 (2016).
Grajewski, R. S. et al. Activation of invariant NKT cells ameliorates experimental ocular autoimmunity by a mechanism involving innate IFN-gamma production and dampening of the adaptive Th1 and Th17 responses. J. Immunol. 181, 4791–4797 (2008).
Cui, Y. et al. Major role of gamma delta T cells in the generation of IL-17+ uveitogenic T cells. J. Immunol. 183, 560–567 (2009).
van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013). This study demonstrates the efficacy of faecal microbiota transplant in the treatment of Clostridium difficile-associated colitis and offers the promise that this therapeutic intervention could be used in other diseases.
Paramsothy, S. et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389, 1218–1228 (2017).
Moayyedi, P. et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149, 102–109.e6 (2015).
Hohmann, E. L., Ananthakrishnan, A. N. & Deshpande, V. Case records of the Massachusetts general hospital. Case 25–2014. A 37-year-old man with ulcerative colitis and bloody diarrhea. N. Engl. J. Med. 371, (668–675 (2014).
Asquith, M. et al. Intestinal metabolites are profoundly altered in the context of HLA-B27 expression and functionally modulate disease in a rat model of spondyloarthritis. Arthritis Rheumatol. 69, 1984–1995 (2017).
Monteleone, G. et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N. Engl. J. Med. 372, 1104–1113 (2015).
Hansen, C. H. et al. Mode of delivery shapes gut colonization pattern and modulates regulatory immunity in mice. J. Immunol. 193, 1213–1222 (2014).
Montoya, J. et al. Patients with ankylosing spondylitis have been breast fed less often than healthy controls: a case-control retrospective study. Ann. Rheum. Dis. 75, 879–882 (2016).
Acknowledgements
The work of the authors was supported by NIH Grants EY026572 to J.T.R., and EY029266 to M.A. and J.T.R., the Spondylitis Association of America to M.A., the William and Mary Bauman Foundation to J.T.R., the Stan and Madelle Family Trust to J.T.R., the Rheumatology Research Foundation to J.T.R. and M.A. and Research to Prevent Blindness to J.T.R. The authors wish to acknowledge many valuable contributions made by the research community that were omitted owing to space to constraints.
Referee accreditation statement
Nature Reviews Rheumatology thanks J. Scher and J. Forrester for their contribution to the peer review of this work.
Author information
Authors and Affiliations
Contributions
Both authors contributed to researching data for the article; substantial discussion of content; and writing, reviewing and editing the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Masquerade syndromes
-
Forms of uveitis that clinically mimic inflammation although inflammation is not the primary cause. Examples include a malignancy such as lymphoma or retinoblastoma, retinal degeneration or retinal detachment.
- Molecular mimicry
-
The induction of autoimmunity caused by a non-self-antigen, such as one derived from a bacteria or virus, that resembles a self-antigen sufficiently such that an autoimmune response is induced.
- Tachyphylaxis
-
In pharmacology, the reduced response to a chemical, such as an opioid, resulting from repeated exposure. Continuous or repetitive exposure to bacterial products such as LPS or peptidoglycan results in tachyphylaxis or reduced inflammation.
Rights and permissions
About this article
Cite this article
Rosenbaum, J.T., Asquith, M. The microbiome and HLA-B27-associated acute anterior uveitis. Nat Rev Rheumatol 14, 704–713 (2018). https://doi.org/10.1038/s41584-018-0097-2
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41584-018-0097-2
This article is cited by
-
Clinical features and fecal microbiota characteristics of patients with both ulcerative colitis and axial spondyloarthritis
BMC Gastroenterology (2024)
-
Efficacy and safety of gut microbiota-based therapies in autoimmune and rheumatic diseases: a systematic review and meta-analysis of 80 randomized controlled trials
BMC Medicine (2024)
-
The gut microbiome and HLA-B27-associated anterior uveitis: a case-control study
Journal of Neuroinflammation (2024)
-
Investigation of the acute pathogenesis of spondyloarthritis/HLA-B27-associated anterior uveitis based on genome-wide association analysis and single-cell transcriptomics
Journal of Translational Medicine (2024)
-
Pathogenese der Uveitis
Spektrum der Augenheilkunde (2024)